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the average effect of these defects over the whole 
crystal. There will be perfect regions within the crystal, 
but defects such as dislocations and stacking faults do 
not normally dissect a crystal into discrete misoriented 
domains. The term 'ellipsoidal perfect domains' has 
been used above for convenience, but it should not be 
imagined that the authors believe in such objects per se. 
The expression (5) is a simple way of allowing the aver- 
age perfect dimension along N to vary with crystal 
orientation. 

It is not known whether the sample of Cr-CI bora- 
cite is exceptional in its defect structure for boracites, 
or for crystals grown by vapour transport. The form 
of a needle is, however, very unusual (Schmid, 1973). 
It is intended to continue with measurements of the 
kind described here, on boracites and other materials, 
in combination if possible with study of the defects by 
X-ray topography. 
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Structure Factor Algebra in the Probabilistic Procedures for Phase Determination. III 
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An investigation has been carried out on the use of normalized, quasi-normalized and pseudo-nor- 
malized structure factors in the probabilistic procedures for phase assignment. A new statistical for- 
mula has been established for centrosymmetric space groups. 

Introduction 

Several ways of normalizing structure factors are used 
in the procedures for the solution of the phase problem 
by direct methods. In part I of this paper (Giacovazzo, 
1974a) we have recalled the definitions of the nor- 
malized structure factor Eh, the quasi-normalized struc- 
ture factor ~h and a pseudo-normalized structure factor 
E~, this last advised by Karle & Karle (1966). Eh ensures 
always that the mean-square (E 2) = 1 with the conse- 
quent simplicity in some distribution functions: the 
quasi-normalized structure factor ~h warrants greater 
simplicity in the derivation of the algebraic relations. 

In the automatic procedures for the calculation of 
crystal structure invariants (Hauptman, Fisher, Han- 
cock & Norton, 1969), quasi-normalized structure 
factors are preferred: in actual symbolic-addition 
procedures or in the multisolution approach the use of 
E or E '  is a personal decision. Giacovazzo (1974a, b) 

has shown that the statistical interactions among 
Eh, Ek, Eh+k are not simple, but depend on the space 
groups and on the parity of the vectors h, k, h _+ k. 

In fact, in centrosymmetric crystals the formula is 

] P+(Eh)=½+½ tanh ~i72 Wh, kEkEh+_k , (1) 

where 
1 (~(h)~(k)~(h _ k) )  . 

~/'h k ~ - -  

m is the order of the space group, ~ its trigonometric 
structure factor. If Eh is a non-centrosymmetric reflex- 
ion, we can write 

P(~oh)=exp (Gh, k COS (~h--~k--(Ph_k))/[27~lo(Gh, k)], (2) 

where 
1 ( ~ ( - h ) ~ ( k ) ~ ( h - k ) )  2 

Gh k :  ' m v'PhPkPh- k ]/N [EhEkEn-k]. 
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If Eh, Ek, E,,-k are general reflexions, equation (1) re- 1 
duces to the well known Cochran & Woolson (1955) t 
formula and relation (2) to the classic Cochran (1956) 
formula. In general, however, the quantity 1 
Wh. klEhEkEh+kl is equal neither to IEhEkEh+_.ul nor to t-q- 
I~h~k~h+kl; in the same way Gh.k coincides neither 
with 2/I/NlEhEkEh_kl nor with 2/l/Nlghgkgh_kl. 1 
This fact requires a further search for the role of E, 6° t z 
and E'  in the procedures which assign phase values by 
the Cochran-Woolfson or tangent formulas. 1 

t 2 

A new phase relation in centrosymmetrie crystals 

In a recent monograph (Giacovazzo, 1974c) we have 
suggested a way of generalizing in all space groups the 
probability distribution P(E,,,Eh+k) of the pair 
Ek, Eh+k, derived by Hauptman & Karle (1958) for PT, 
when h is fixed and k varies through all reciprocal 
space. The result, for a centrosymmetric space group 
of order m, is 

1 
P(E,,,Eh+k)= 2--n-~ exp[-- ½E,~-*E] 

{ 1 [ ~  ~230 H3(Ek) x 1+ t-5~ ~ 

t j 
' J203 Ha(Eh+k)+ 2,2 + ~ ~ ~ j  ~ HI(Eu)H2(Eh+u) 

t j221 ] 
+ ~ j  ~ Hz(Ek)HI(Eh+k) 

+ 7  T J 4.-~. 

+ ~J3~.lV: %" H~(E~)H~(E.+~) 

'222 nz(Ev3H2(Eh+u)+ ] ,  (3) 
+ J 2 . - ~  " '" 

where 

E = (Ek, Eh+k), '~= [ 1 + ~  JJ2*t ] 

,~-* the inverse matrix. 
Moreover, 2 is the determinant of ,~, J2,~ are the 

standardized cumulants of the distribution, t is the 
number of atoms in the asymmetric region of the cell 
Hv is the Hermite polynomial defined by the equation 

& 
H, (x )=( -  1) ~ exp [½x 21 ~ exp [-½x21. (4) 

By using linearization theory (Bertaut, 1959) we have 
obtained the following relations: 

t 1 t 1 1 

t J/I,40 1 
~J4!0!  > -- ; 8--~ 

J2s l~  1 ' 
- -  J 3VlV - 6N s/z {2~@hCa--(2m+3)gh} ; 

• • 1 

~'t J'~22 _ 1 1 
g2h ~J  212l 2N 4N 3/2 

where Cs is the s-symmetry operation (Rs rotation com- 
ponent, Ts translation component) of the space group. 

If we neglect in (3) all the terms bar the first, we 
obtain the expression 

1 
P(Eu, Eh+k) = 2n(1 -g~/N) 1/2 

{ 1 2 ghEkEh+k+E2+u)}. x e x p  - 2 ( 1 - ~ / N )  (E~- 

(5) 

It is easy to derive from (5) the relation [see Tsoucaris 
(1970) for P1-] 

P + (EhEkEh + k) = ½ 

[ 1 1 +½tanh I /N( I_~ /N  ) Id~hEkEh+k[ ; (6) 

if we neglect in (3) terms of order 1/N and higher, 
equation (6) is valid in all the space groups. By a 
property of the Hermite polynomials we may write 

o o  y.~ H~(x)H~(y) t~ - 1 
o v! l / i_t  2 

[ 1 ] 
x exp 2(1_t2 ) (t2x2+t2y2-2txy) , ([ t l<l) .  

Consequently the result is 

oo H~(Ek)H~(Eh+k) O~ - 1 _  
Y~o v! 1/i -02 

x e x p [  E~,+ E~+k--2oEkEh+k ] 
2(1--02 ) 

x exp [½(E~ + E~]+k)], (7) 

where O=gdN. Equation (7) gives easily the relation 

1 oo 1 
P(Ek, Eh+k) = ~ o 2~ -~. Hv(Ek)H~(Eh+k) 

x exp [-(E~+E~]+k)/2]Q'. (8) 

If we take relation (4) into account, from (8) we deduce 
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oo 1 ¢ (v+ , ) (Ek)¢ (~+ , ) (Eh+ , , )O  ~ (9) P(Ek, Eh+k) = 2v ~ 
o 

where 
dr+, 

• (~+- (E)= d~ ¢(E) 

,i and ¢ (E)  = ~ ooexp ( - t 2 / 2 ) d t .  

Let us integrate (9) term by term: we obtain 

I ~ 'oo lz~oo P ( Ek, Eh + k)dEkdEh + k 

~<') (E,)¢ <~) (E2) 
=~" v! o 

0 • , (10) 

which becomes, when Ex =E2 =0,  

0 0 2v [~<v> (0)] 2 

- o o  - o o  0 V! 
0 ~ . (11) 

E h+k__ 

,/% . t  . . . .  ., " ~  " ~  ¢ ~ , / , , . t ~  - 

' / / /  

/ 3  / ~ / / !  

Fig. 1. The  curves cor respond  to N = 4 0 .  

i .i .~ .; .~ .'5 .6 .~ .'8 .'9 ~io 
Fig. 2. Percentage of  positive products  EnEkEn+k when a 

threshold value gt  is fixed. 

The evaluation of the right-hand side of (11) may be 
made by comparing (9) to (5) when Ek = Eh +k = 0: we 
obtain 

oo [~c,,+*)(0)]2 O v -  1 
~ (12) 
o v! 2zcl/-f-_ 02 

By integrating (12) in respect to Q we deduce 

i 
~ oo [~<.,-,-. ( 0 ) ] 2  

~v v! oVd0 
0 o 

o~ [¢<~> ( 0 ) ] 2  e ~ =  1 
= ~ v! ~-~ arcsin 0 • 

I 

We may write finally equation (11) in the form 

so so 1 . . . .  P(Ek,Eh+k)dEkdEh+k=¼ + ~ arcsin 

(13) 

The left-hand side of (13) represents the population 
of the normalized structure factors which lie in the 
third quadrant of the plane (Ek, En+k). By the sym- 
metry properties of equation (5) the left-hand side of 
(13) also represents the population contained in the 
first quadrant, while each of the second and fourth 
quadrants contains ¼-1/27: arcsin (~h/]/N). In other 
words, if d~h is positive, the population of the first and 
third quadrants is larger than ½: if 5~h is negative the 
second and fourth quadrants are more crowded than 
other two. 

Relation (13) may be visualized by introducing the 
ellipse of concentration of the distribution (5): 

2 ghEkEn+k + EkZ+k=4(1--g~/N).  

As is well known, a uniform distribution over the 
area enclosed by this ellipse has the same first and 
second-order moments as the distribution (5). In Fig. 1 
some ellipses of concentration are shown: the didactic 
value of the figure is related to its simplicity. 

We can conclude that the percentage of positive 
products EhEkEh+k, when k varies over all reciprocal 
space, is equal to ½+ lfiz arcsin (~h/I/N). If  g h = 0 ,  the 
percentage is equal to ½: if OZh= I/N, all the products 
EhEkEh+k are positive. 

This last result is in contrast with the Cochran- 
Woolfson (1955) formula 

P+(EhEkEh+k)=½+½ tanh [IEhEkEh+ul/l/N] . (14) 

Klug (1958), however, showed that equation (14) gives 
an understimate of the probability when the structure 
factors involved are large. Our result seems more ac- 
curate and agrees well with that of Tsoucaris (1970). 

A statistical meaning of  the ~o threshold 

In any method of direct phase determination reliable 
phase assignments are generally associated with the 
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larger d ° values. By the use of the multiple-sign rela- 
tions, however, the probability formulae permit assign- 
ment of reliable phase values to reflexions with small 
also [see, for an extreme case, Dewar (1970)]. 

Fourier synthesis resulting from the larger-g coef- 
ficients will be affected by an amplitude-termination 
effect (Biirgi & Dunitz, 1971), particularly severe for 
structures containing some regularities. On the other 
hand, it may be advantageous to break off the proce- 
dure for the phase assignment at an early stage be- 
cause of the very rapid propagation of the errors when 
incorrect signs have been assigned [see, for P1, Mo, 
Hjortas & Svinning (1973)]. 

Hence, in the automatic procedures for phase deter- 
mination, a limited number of phases is assigned by 
fixing an do threshold (dot=0.8-1.4). However, it may 
be difficult to judge a priori the worthiness of a given 
threshold if no absolute figure of merit based on statis- 
tical criteria is known. Equation (9) permits us to state 
a relation between gt and the percentage of positive 
products E~E,,Eh+k that we must expect. 

In fact, we deduce from (9) and (10) that the per- 
centage of positive products, when gh is fixed and k 
varies with all the factors IEk[ > dot, IEh+kl > gt, is equal 
to 

vt I~1~ (_do,)]2 

[~(~ ( -  dot)] ~ 
+ ~v v! ( -  I°l)~/" (15) 

0 

Owing to the fast convergence of the series involved in 
(15), Pr is easily computable. In Fig. 2 we have plotted 
some curves, each corresponding to a single value of 
St. So, for a structure with N =  100, the expected per- 
centage of positive products ¢hCkdoh+k, when doh = 1"5 
and dot= 1"5, is 0"76: this percentage comes down to 
0.70 when dot = 1.2 and to 0.67 when Ct = 1. 

In conclusion, any choice of dot corresponds to an 
expected percentage of positive products EhEkEh+k; 
for example, if we fix dot = 1.2 for a structure with N =  
50, we must expect, for doh = 1"40, a value Pr = 0.64. 

A suitable choice of Ct, therefore, must take N into 
account; so it seems reasonable to choose fairly large 
dot for large structures, but for small structures we can 
lower the threshold. The occurrence of pseudo-sym- 
metry or hyper-symmetry in the crystal structure, a re- 
duced extension of the diffraction data, or accidental 
or systematic errors in the Idol values, can cause a lack 
of agreement between theory and practice. 

A very important role in defining a 'good' value of 
dot is played by the order of symmetry of the actual 
space group. In fact, in space groups of high symmetry 
multiple-sign relations are frequent from the early 
stages of the phase-assignment process. This condition, 
as is well known, makes the crystal structure solution 
much easier. 

In space groups of low symmetry multiple-sign indi- 
cations are comparatively less frequent and the error 

propagation can be more rapid" higher threshold 
values d°t may be suitable in these cases. These conside- 
rations explain the results of Mo, Hjortas & Svinning 
(1973) for P l group. 

The non-eentrosymmetric case 

By analysis slightly modified in comparison with that 
suggested by Hauptman (1972) we obtain the relation 

1 
P(~0k,~0h+klA)-- 4nVo( A ) 

× exp {A cos (~0h+~0k--~0h+k)}, 

where 

,4= 2ldohEkEh+kl 
VN(1 -do~/N) " 

(16) 

We emphasize once more that k and h + k  are gen- 
eral reflexions whereas h may be a general or a special 
reflexion. In accordance with the results obtained in 
part II (Giacovazzo, 1974b) of this series, the variance 
of the distribution (16) is bound t o  ~'° h and not to Eh. 

Conclusions 

In this paper we have considered a special type of 
distribution P(Eh, Ek, Eh+k), which corresponds to a 
random variable k when h is fixed. Ek and Eh+k, 
therefore, play the role of general reflexions (dok= 
Ek, doh+k=Eh+k), while Eh may be a general or a 
special reflexion. Under these conditions equation (13) 
tells us that the percentage of the positive products 
EhEkEh+k is bound, when k varies over all the recip- 
rocal space, to the quasi-normalized structure factor 
e~h and not to Eh. This is not a surprising result, after 
the considerations made in parts I and II of this 
series. 

From a more general point of view, however, in the 
probabilistic procedures for the phase assignment, one 
should not use do factors instead of E. 

In fact, a measure of the reliability of the phase 
relation ~0h--~ Ck + ~0~,-k depends, in the non-centrosym- 
metric as well as in centrosymmetric space group, on 
the quantities 

1 (~( -h)~(k)~(h-k) ) ]EhEkEa+kl .  (16) 
m P . -  k 

If we limit ourself to considering merely the product 
dohCkd°h+k, we can overestimate the reliability of the 
phase relationship; consideration of the product 
EhEkEh+k alone may lead us to an underestimate. 

However, if one does not wish to spend calculation 
time in the evaluation of the quantity (16), the use of E 
factors seems more suitable, according to the principles 
usually adopted for proper weighting. 
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No theoretical justification has been made, on the 
other hand, for the use of the pseudo-nolrmaized struc- 
ture factors E '  proposed by Karle & Karle (1966). 
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The Phase Problem and its Implications in the Least-squares Refinement of Crystal Structures 
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It is found that covariance problems encountered in pseudosymmetric crystal structures are caused by 
an incorrect use of the least-squares refinement procedure. Rederivation of the least-squares equations 
for the situation in which the residual need not have the phase angle e or e + re, where e is the phase angle 
associated with a trial structure, reveals that the minimization of the component at re/2 to e has been 
omitted from the least-squares equations. Inclusion of the extra terms associated with this minimization 
reveals that it should now be possible to refine a centrosymmetric crystal in an non-centrosymmetric 
space group. It is also shown that the use of weights derived from counting statistics alone is incorrect 
and, with a correct weighting scheme, Y.wA2/(n- m) should reduce to one in a single cycle. The weighting 
scheme is re-evaluated for further refinement cycles. 

Introduction 

For the least-squares refinement of single-crystal struc- 
tures from X-ray diffraction data it has been customary 
(International Tables for X-ray Crystallography, 1959) 
to minimize the sum of the n weighted squared residuals 
S~=YWh(IFolh--lFcl~) z, where w ~ l = v a r  (IFol~), by solv- 

h 
ing the equations 

~A ~A 

=--~,WhAoh ; i = l t o m ,  
h Oh 

where A = [Fol- IFc[, the difference between the meas- 
ured and calculated amplitudes. Throughout this 
paper the subscript h implies the hth observable and 
the subscript 0 implies evaluation with parameters 
(u~)0 of a trial structure. Now for A=]Fol-IFd and 
tan cto=(BJAc) o we use (Ozl/OUOon=-(OlFd/OU3on= 
- [cos Cto(OAc/OU~)o + sin ~o(OBJOu~)o]h. 

The application of this procedure reveals two ap- 
parent faults. Firstly the assumption that w~-l= 
var (IFolk) because (Fc)h is without error does not 
produce the expected result that ~whA2=n--m in a 

h 
single cycle. Secondly, in pseudosymmetric structures 
the apparent variances of parameters uj are usually in 
excess of calculated variances (Rae, 1973). This sug- 
gests that both the weighting scheme and the actual 
least-squares equations are at fault. Investigation shows 
that this hypothesis is indeed true and that the situa- 
tion may be remedied. 

Theory 

The least-squares equations 
Account should be taken of the fact that we are 

dealing with quantities F=A + iB that do not have a 
fixed phase. If (Fo)o is an initial estimate of the phased 
quantity Fo for which only the magnitude IFol has been 
experimentally determined, then it is found that a dif- 
ferent set of least-squares equations are generated by 


